Cyan Blog Cyan Blog
首页
  • Java (opens new window)
  • JUC (opens new window)
  • JVM (opens new window)
  • Redis

    • Redis安装 (opens new window)
    • Redis基础 (opens new window)
    • Redis实战 (opens new window)
    • Redis集群安装 (opens new window)
    • Redis分布式缓存 (opens new window)
    • Redis多级缓存 (opens new window)
    • Redis原理 (opens new window)
  • 管理工具

    • Maven (opens new window)
    • Git (opens new window)
  • SSM

    • Spring (opens new window)
    • SpringBoot (opens new window)
    • Mybatis (opens new window)
    • MybatisPlus (opens new window)
  • 微服务

    • Docker (opens new window)
    • RabbitMQ (opens new window)
    • SpringCloud (opens new window)
    • Dubbo (opens new window)
    • MongoDB (opens new window)
    • Zookeeper (opens new window)
  • Java面试题 (opens new window)
  • JUC面试题 (opens new window)
  • JVM面试题 (opens new window)
  • Linux面试题 (opens new window)
  • SQL面试题 (opens new window)
  • Maven面试题 (opens new window)
  • Redis面试题 (opens new window)
  • SSM面试题 (opens new window)
  • SpringCloud面试题 (opens new window)
  • Linux (opens new window)
  • C++ (opens new window)
  • 数据库

    • MySQL (opens new window)
    • NoSQL (opens new window)
  • 软件测试

    • 软件测试 (opens new window)
  • 加密解密 (opens new window)
  • bilibili字幕提取 (opens new window)
  • 道理 (opens new window)
  • 关于博主

    • Github (opens new window)
    • CSDN (opens new window)
  • 关于本站

    • 如何搭建博客网站 (opens new window)
首页
  • Java (opens new window)
  • JUC (opens new window)
  • JVM (opens new window)
  • Redis

    • Redis安装 (opens new window)
    • Redis基础 (opens new window)
    • Redis实战 (opens new window)
    • Redis集群安装 (opens new window)
    • Redis分布式缓存 (opens new window)
    • Redis多级缓存 (opens new window)
    • Redis原理 (opens new window)
  • 管理工具

    • Maven (opens new window)
    • Git (opens new window)
  • SSM

    • Spring (opens new window)
    • SpringBoot (opens new window)
    • Mybatis (opens new window)
    • MybatisPlus (opens new window)
  • 微服务

    • Docker (opens new window)
    • RabbitMQ (opens new window)
    • SpringCloud (opens new window)
    • Dubbo (opens new window)
    • MongoDB (opens new window)
    • Zookeeper (opens new window)
  • Java面试题 (opens new window)
  • JUC面试题 (opens new window)
  • JVM面试题 (opens new window)
  • Linux面试题 (opens new window)
  • SQL面试题 (opens new window)
  • Maven面试题 (opens new window)
  • Redis面试题 (opens new window)
  • SSM面试题 (opens new window)
  • SpringCloud面试题 (opens new window)
  • Linux (opens new window)
  • C++ (opens new window)
  • 数据库

    • MySQL (opens new window)
    • NoSQL (opens new window)
  • 软件测试

    • 软件测试 (opens new window)
  • 加密解密 (opens new window)
  • bilibili字幕提取 (opens new window)
  • 道理 (opens new window)
  • 关于博主

    • Github (opens new window)
    • CSDN (opens new window)
  • 关于本站

    • 如何搭建博客网站 (opens new window)
  • RabbitMQ

  • Kafka
  • ElasticSearch

    • 学习目标
    • 初识elasticsearch
    • 索引库操作
    • 文档操作
    • RestAPI
    • RestClient操作文档
    • DSL查询
      • 快速入门
      • 叶子查询⭐
      • 复合查询
      • 排序
      • 分页
      • 高亮
      • 总结
    • RestClient查询
    • 数据聚合
  • 中间件
  • ElasticSearch
2025-05-02
0
0
目录

DSL查询

对文档的查询语法DSL

Elasticsearch的查询可以分为两大类:

  • 叶子查询(Leaf query clauses):一般是在特定的字段里查询特定值,属于简单查询,很少单独使用。
  • 复合查询(Compound query clauses):以逻辑方式组合多个叶子查询或者更改叶子查询的行为方式。

# 快速入门

我们依然在Kibana的DevTools中学习查询的DSL语法。首先来看查询的语法结构:

GET /{索引库名}/_search
{
  "query": {
    "查询类型": {
      // .. 查询条件
    }
  }
}

说明:

  • GET /{索引库名}/_search:其中的_search是固定路径,不能修改

例如,我们以最简单的无条件查询为例,无条件查询的类型是:match_all,因此其查询语句如下:

GET /items/_search
{
  "query": {
    "match_all": {
      
    }
  }
}

由于match_all无条件,所以条件位置不写即可。

img

你会发现虽然是match_all,但是响应结果中并不会包含索引库中的所有文档,而是仅有10条。这是因为处于安全考虑,elasticsearch设置了默认的查询页数。

# 叶子查询⭐

叶子查询的类型也可以做进一步细分,详情大家可以查看官方文档:

这里列举一些常见的,例如:

  • 全文检索查询(Full Text Queries):利用分词器对用户输入搜索条件先分词,得到词条,然后再利用倒排索引搜索词条。例如:
    • match:
    • multi_match
  • 精确查询(Term-level queries):不对用户输入搜索条件分词,根据字段内容精确值匹配。但只能查找keyword、数值、日期、boolean类型的字段。例如:
    • ids
    • term
    • range
  • 地理坐标查询:用于搜索地理位置,搜索方式很多,例如:
    • geo_bounding_box:按矩形搜索
    • geo_distance:按点和半径搜索

# 全文检索查询

全文检索的种类也很多,详情可以参考官方文档:https://www.elastic.co/guide/en/elasticsearch/reference/7.12/full-text-queries.html

以全文检索中的match为例,语法如下:(常用)

GET /{索引库名}/_search
{
  "query": {
    "match": {
      "字段名": "搜索条件"
    }
  }
}

与match类似的还有multi_match,区别在于可以同时对多个字段搜索,而且多个字段都要满足,语法示例:(搜索性能低)

GET /{索引库名}/_search
{
  "query": {
    "multi_match": {
      "query": "搜索条件",
      "fields": ["字段1", "字段2"]
    }
  }
}

# 精确查询⭐

精确查询,英文是Term-level query,顾名思义,词条级别的查询。也就是说不会对用户输入的搜索条件再分词,而是作为一个词条,与搜索的字段内容精确值匹配。因此推荐查找keyword、数值、日期、boolean类型的字段。例如:

  • id
  • price
  • 城市
  • 地名
  • 人名

等等,作为一个整体才有含义的字段。

详情可以查看官方文档:https://www.elastic.co/guide/en/elasticsearch/reference/7.12/term-level-queries.html

term查询,其语法如下:

GET /{索引库名}/_search
{
  "query": {
    "term": {
      "字段名": {
        "value": "搜索条件"
      }
    }
  }
}

当你输入的搜索条件不是词条,而是短语时,由于不做分词,你反而搜索不到:

range查询,语法如下:

GET /{索引库名}/_search
{
  "query": {
    "range": {
      "字段名": {
        "gte": {最小值},
        "lte": {最大值}
      }
    }
  }
}

range是范围查询,对于范围筛选的关键字有:

  • gte:大于等于
  • gt:大于
  • lte:小于等于
  • lt:小于

ids查询

GET /{索引库名}/_search
{
  "query": {
    "ids": {
      "values": ["", ""]
    }
  }
}

# 复合查询

复合查询大致可以分为两类:

  • 第一类:基于逻辑运算组合叶子查询,实现组合条件,例如
    • bool
  • 第二类:基于某种算法修改查询时的文档相关性算分,从而改变文档排名。例如:
    • function_score
    • dis_max

其它复合查询及相关语法可以参考官方文档:

# 算分函数查询(选讲)

当我们利用match查询时,文档结果会根据与搜索词条的关联度打分(_score),返回结果时按照分值降序排列。

# bool查询

bool查询,即布尔查询。就是利用逻辑运算来组合一个或多个查询子句的组合。bool查询支持的逻辑运算有:

  • must:必须匹配每个子查询,类似“与”
  • should:选择性匹配子查询,类似“或”
  • must_not:必须不匹配,不参与算分,类似“非”
  • filter:必须匹配,不参与算分

bool查询的语法如下:

GET /items/_search
{
  "query": {
    "bool": {
      "must": [
        {"match": {"name": "手机"}}
      ],
      "should": [
        {"term": {"brand": { "value": "vivo" }}},
        {"term": {"brand": { "value": "小米" }}}
      ],
      "must_not": [
        {"range": {"price": {"gte": 2500}}}
      ],
      "filter": [
        {"range": {"price": {"lte": 1000}}}
      ]
    }
  }
}

出于性能考虑,与搜索关键字无关的查询尽量采用must_not或filter逻辑运算,避免参与相关性算分。

其中输入框的搜索条件肯定要参与相关性算分,可以采用match。但是价格范围过滤、品牌过滤、分类过滤等尽量采用filter,不要参与相关性算分。

比如,我们要搜索手机,但品牌必须是华为,价格必须是900~1599,那么可以这样写:

GET /items/_search
{
  "query": {
    "bool": {
      "must": [
        {"match": {"name": "手机"}}
      ],
      "filter": [
        {"term": {"brand": { "value": "华为" }}},
        {"range": {"price": {"gte": 90000, "lt": 159900}}}
      ]
    }
  }
}

# 排序

elasticsearch默认是根据相关度算分(_score)来排序,但是也支持自定义方式对搜索结果排序。不过分词字段无法排序,能参与排序字段类型有:keyword类型、数值类型、地理坐标类型、日期类型等。

详细说明可以参考官方文档:https://www.elastic.co/guide/en/elasticsearch/reference/7.12/sort-search-results.html

语法说明:

GET /indexName/_search
{
  "query": {
    "match_all": {}
  },
  "sort": [
    {
      "排序字段": {
        "order": "排序方式asc和desc"
      }
    }
  ]
}

# 分页

elasticsearch 默认情况下只返回top10的数据。而如果要查询更多数据就需要修改分页参数了。

# 基础分页

elasticsearch中通过修改from、size参数来控制要返回的分页结果:

  • from:从第几个文档开始
  • size:总共查询几个文档

类似于mysql中的limit ?, ?

官方文档如下:https://www.elastic.co/guide/en/elasticsearch/reference/7.12/paginate-search-results.html

语法如下:

GET /items/_search
{
  "query": {
    "match_all": {}
  },
  "from": 0, // 分页开始的位置,默认为0
  "size": 10,  // 每页文档数量,默认10
  "sort": [
    {
      "price": {
        "order": "desc"
      }
    }
  ]
}

# 深度分页

elasticsearch的数据一般会采用分片存储,也就是把一个索引中的数据分成N份,存储到不同节点上。这种存储方式比较有利于数据扩展,但给分页带来了一些麻烦。

比如一个索引库中有100000条数据,分别存储到4个分片,每个分片25000条数据。现在每页查询10条,查询第99页。那么分页查询的条件如下:

GET /items/_search
{
  "from": 990, // 从第990条开始查询
  "size": 10, // 每页查询10条
  "sort": [
    {
      "price": "asc"
    }
  ]
}

深度分页的问题

  • 从语句来分析,要查询第990~1000名的数据。
  • 从实现思路来分析,肯定是将所有数据排序,找出前1000名,截取其中的990~1000的部分。但问题来了,我们如何才能找到所有数据中的前1000名呢?
  • 要知道每一片的数据都不一样,第1片上的第900~ 1000,在另1个节点上并不一定依然是900~ 1000名。所以我们只能在每一个分片上都找出排名前1000的数据,然后汇总到一起,重新排序,才能找出整个索引库中真正的前1000名,此时截取990~ 1000的数据即可。
  • 试想一下,假如我们现在要查询的是第999页数据呢,是不是要找第9990~10000的数据,那岂不是需要把每个分片中的前10000名数据都查询出来,汇总在一起,在内存中排序?如果查询的分页深度更深呢,需要一次检索的数据岂不是更多?
  • 由此可知,当查询分页深度较大时,汇总数据过多,对内存和CPU会产生非常大的压力。
  • 因此elasticsearch会禁止from+ size超过10000的请求。

针对深度分页,elasticsearch提供了两种解决方案:

  • search after:分页时需要排序,原理是从上一次的排序值开始,查询下一页数据。官方推荐使用的方式。(游标查询)
  • scroll:原理将排序后的文档id形成快照,保存下来,基于快照做分页。官方已经不推荐使用。

总结:

大多数情况下,我们采用普通分页就可以了。查看百度、京东等网站,会发现其分页都有限制。例如百度最多支持77页,每页不足20条。京东最多100页,每页最多60条。

因此,一般我们采用限制分页深度的方式即可,无需实现深度分页。

# 高亮

我们在百度,京东搜索时,关键字会变成红色,比较醒目,这叫高亮显示:

观察页面源码,你会发现两件事情:

  • 高亮词条都被加了<em>标签
  • <em>标签都添加了红色样式

css样式肯定是前端实现页面的时候写好的,但是前端编写页面的时候是不知道页面要展示什么数据的,不可能给数据加标签。而服务端实现搜索功能,要是有elasticsearch做分词搜索,是知道哪些词条需要高亮的。

因此词条的高亮标签肯定是由服务端提供数据的时候已经加上的。

因此实现高亮的思路就是:

  • 用户输入搜索关键字搜索数据
  • 服务端根据搜索关键字到elasticsearch搜索,并给搜索结果中的关键字词条添加html标签
  • 前端提前给约定好的html标签添加CSS样式

# 实现高亮

事实上elasticsearch已经提供了给搜索关键字加标签的语法,无需我们自己编码。

基本语法如下:

GET /{索引库名}/_search
{
  "query": {
    "match": {
      "搜索字段": "搜索关键字"
    }
  },
  "highlight": {
    "fields": {
      "高亮字段名称": {
        "pre_tags": "<em>",
        "post_tags": "</em>"
      }
    }
  }
}

注意:

  • 搜索必须有查询条件,而且是全文检索类型的查询条件,例如match
  • 参与高亮的字段必须是text类型的字段
  • 默认情况下参与高亮的字段要与搜索字段一致,除非添加:required_field_match=false

img

# 总结

查询的DSL是一个大的JSON对象,包含下列属性:

  • query:查询条件
  • from和size:分页条件
  • sort:排序条件
  • highlight:高亮条件

示例:

GET /items/_search
{
  "query": {
    "match": {
      "name": "华为"
    }
  },
  "from": 0,//分页开始的位置
  "to": 20,//期望获取的文档总数
  "sort": [
      {"price": "asc"},//普通排序
  ],
  "highlight": {
    "fields": {//高亮字段
      "name": {
        "pre_tags": "<em>",//高亮字段的前置标签
        "post_tags": "</em>"//高亮字段的后置标签
      }
    }
  }
}
#中间件
上次更新: 2025/5/3 23:15:15
RestClient操作文档
RestClient查询

← RestClient操作文档 RestClient查询→

最近更新
01
项目优化
05-06
02
项目优化
05-06
03
延迟消息
05-05
更多文章>
Theme by Vdoing | Copyright © 2025-2025 Cyan Blog
  • 跟随系统
  • 浅色模式
  • 深色模式
  • 阅读模式