Cyan Blog Cyan Blog
首页
  • Java (opens new window)
  • JUC (opens new window)
  • JVM (opens new window)
  • Redis

    • Redis安装 (opens new window)
    • Redis基础 (opens new window)
    • Redis实战 (opens new window)
    • Redis集群安装 (opens new window)
    • Redis分布式缓存 (opens new window)
    • Redis多级缓存 (opens new window)
    • Redis原理 (opens new window)
  • 管理工具

    • Maven (opens new window)
    • Git (opens new window)
  • SSM

    • Spring (opens new window)
    • SpringBoot (opens new window)
    • Mybatis (opens new window)
    • MybatisPlus (opens new window)
  • 微服务

    • Docker (opens new window)
    • RabbitMQ (opens new window)
    • SpringCloud (opens new window)
    • Dubbo (opens new window)
    • MongoDB (opens new window)
    • Zookeeper (opens new window)
  • Java面试题 (opens new window)
  • JUC面试题 (opens new window)
  • JVM面试题 (opens new window)
  • Linux面试题 (opens new window)
  • SQL面试题 (opens new window)
  • Maven面试题 (opens new window)
  • Redis面试题 (opens new window)
  • SSM面试题 (opens new window)
  • SpringCloud面试题 (opens new window)
  • Linux (opens new window)
  • C++ (opens new window)
  • 数据库

    • MySQL (opens new window)
    • NoSQL (opens new window)
  • 软件测试

    • 软件测试 (opens new window)
  • 加密解密 (opens new window)
  • bilibili字幕提取 (opens new window)
  • 道理 (opens new window)
  • 关于博主

    • Github (opens new window)
    • CSDN (opens new window)
  • 关于本站

    • 如何搭建博客网站 (opens new window)
首页
  • Java (opens new window)
  • JUC (opens new window)
  • JVM (opens new window)
  • Redis

    • Redis安装 (opens new window)
    • Redis基础 (opens new window)
    • Redis实战 (opens new window)
    • Redis集群安装 (opens new window)
    • Redis分布式缓存 (opens new window)
    • Redis多级缓存 (opens new window)
    • Redis原理 (opens new window)
  • 管理工具

    • Maven (opens new window)
    • Git (opens new window)
  • SSM

    • Spring (opens new window)
    • SpringBoot (opens new window)
    • Mybatis (opens new window)
    • MybatisPlus (opens new window)
  • 微服务

    • Docker (opens new window)
    • RabbitMQ (opens new window)
    • SpringCloud (opens new window)
    • Dubbo (opens new window)
    • MongoDB (opens new window)
    • Zookeeper (opens new window)
  • Java面试题 (opens new window)
  • JUC面试题 (opens new window)
  • JVM面试题 (opens new window)
  • Linux面试题 (opens new window)
  • SQL面试题 (opens new window)
  • Maven面试题 (opens new window)
  • Redis面试题 (opens new window)
  • SSM面试题 (opens new window)
  • SpringCloud面试题 (opens new window)
  • Linux (opens new window)
  • C++ (opens new window)
  • 数据库

    • MySQL (opens new window)
    • NoSQL (opens new window)
  • 软件测试

    • 软件测试 (opens new window)
  • 加密解密 (opens new window)
  • bilibili字幕提取 (opens new window)
  • 道理 (opens new window)
  • 关于博主

    • Github (opens new window)
    • CSDN (opens new window)
  • 关于本站

    • 如何搭建博客网站 (opens new window)
  • Redis安装

  • Redis基础
  • Redis实战——黑马点评

    • 短信登录
    • 商户查询缓存
    • 优惠卷秒杀
    • 分布式锁
    • 分布式锁-redission⭐⭐
    • 秒杀优化
      • 6.1 秒杀优化-异步秒杀思路
      • 6.2 秒杀优化-Redis完成秒杀资格判断
      • 6.3 秒杀优化-基于阻塞队列实现秒杀优化
    • Redis消息队列
    • 达人探店(ZSET)
    • 好友关注(SET)
    • 附近商户
    • Redis实战
    • 项目优化
  • Redis集群
  • Redis分布式缓存
  • Redis多级缓存
  • Redis原理
  • 案例导入说明
  • 安装OpenResty
  • Redis
  • Redis实战——黑马点评
2025-04-20
0
0
目录

秒杀优化

# 6、秒杀优化**(还有问题)

# 6.1 秒杀优化-异步秒杀思路

我们来回顾一下下单流程

当用户发起请求,此时会请求nginx,nginx会访问到tomcat,而tomcat中的程序,会进行串行操作,分成如下几个步骤

1、查询优惠卷

2、判断秒杀库存是否足够

3、查询订单

4、校验是否是一人一单

5、扣减库存

6、创建订单

在这六步操作中,又有很多操作是要去操作数据库的,而且还是一个线程串行执行, 这样就会导致我们的程序执行的很慢,所以我们需要异步程序执行,那么如何加速呢?

在这里笔者想给大家分享一下课程内没有的思路,看看有没有小伙伴这么想,比如,我们可以不可以使用异步编排来做,或者说我开启N多线程,N多个线程,一个线程执行查询优惠卷,一个执行判断扣减库存,一个去创建订单等等,然后再统一做返回,这种做法和课程中有哪种好呢?答案是课程中的好,因为如果你采用我刚说的方式,如果访问的人很多,那么线程池中的线程可能一下子就被消耗完了,而且你使用上述方案,最大的特点在于,你觉得时效性会非常重要,但是你想想是吗?并不是,比如我只要确定他能做这件事,然后我后边慢慢做就可以了,我并不需要他一口气做完这件事,所以我们应当采用的是课程中,类似消息队列的方式来完成我们的需求,而不是使用线程池或者是异步编排的方式来完成这个需求

image-20250125141649547

优化方案:我们将耗时比较短的逻辑判断放入到redis中,比如是否库存足够,比如是否一人一单,这样的操作,只要这种逻辑可以完成,就意味着我们是一定可以下单完成的,我们只需要进行快速的逻辑判断,根本就不用等下单逻辑走完,我们直接给用户返回成功, 再在后台开一个线程,后台线程慢慢的去执行queue里边的消息,这样程序不就超级快了吗?而且也不用担心线程池消耗殆尽的问题,因为这里我们的程序中并没有手动使用任何线程池,当然这里边有两个难点

第一个难点是我们怎么在redis中去快速校验一人一单,还有库存判断

第二个难点是由于我们校验和tomct下单是两个线程,那么我们如何知道到底哪个单他最后是否成功,或者是下单完成,为了完成这件事我们在redis操作完之后,我们会将一些信息返回给前端,同时也会把这些信息丢到异步queue中去,后续操作中,可以通过这个id来查询我们tomcat中的下单逻辑是否完成了。

image-20250125141701693

我们现在来看看整体思路:当用户下单之后,判断库存是否充足只需要导redis中去根据key找对应的value是否大于0即可,如果不充足,则直接结束,如果充足,继续在redis中判断用户是否可以下单,如果set集合中没有这条数据,说明他可以下单,如果set集合中没有这条记录,则将userId和优惠卷存入到redis中,并且返回0,整个过程需要保证是原子性的,我们可以使用lua来操作

当以上判断逻辑走完之后,我们可以判断当前redis中返回的结果是否是0 ,如果是0,则表示可以下单,则将之前说的信息存入到到queue中去,然后返回,然后再来个线程异步的下单,前端可以通过返回的订单id来判断是否下单成功。

image-20250125141705929

# 6.2 秒杀优化-Redis完成秒杀资格判断

需求:

  • 新增秒杀优惠券的同时,将优惠券信息保存到Redis中

  • 基于Lua脚本,判断秒杀库存、一人一单,决定用户是否抢购成功

  • 如果抢购成功,将优惠券id和用户id封装后存入阻塞队列

  • 开启线程任务,不断从阻塞队列中获取信息,实现异步下单功能

KEY VALUE
stock:vid:7 100
KEY VALUE
order:vid:7 1,2,3,5,7,8

VoucherServiceImpl

@Override
@Transactional
public void addSeckillVoucher(Voucher voucher) {
    // 保存优惠券
    save(voucher);
    // 保存秒杀信息
    SeckillVoucher seckillVoucher = new SeckillVoucher();
    seckillVoucher.setVoucherId(voucher.getId());
    seckillVoucher.setStock(voucher.getStock());
    seckillVoucher.setBeginTime(voucher.getBeginTime());
    seckillVoucher.setEndTime(voucher.getEndTime());
    seckillVoucherService.save(seckillVoucher);
    // 保存秒杀库存到Redis中
    //SECKILL_STOCK_KEY 这个变量定义在RedisConstans中
    //private static final String SECKILL_STOCK_KEY ="seckill:stock:"
    stringRedisTemplate.opsForValue().set(SECKILL_STOCK_KEY + voucher.getId(), voucher.getStock().toString());
}

seckill.lua

-- 1.参数列表
-- 1.1.优惠券id
local voucherId = ARGV[1]
-- 1.2.用户id
local userId = ARGV[2]
-- 1.3.订单id
local orderId = ARGV[3]

-- 2.数据key
-- 2.1.库存key
local stockKey = 'seckill:stock:' .. voucherId
-- 2.2.订单key
local orderKey = 'seckill:order:' .. voucherId

-- 3.脚本业务
-- 3.1.判断库存是否充足 get stockKey
if(tonumber(redis.call('get', stockKey)) <= 0) then
    -- 3.2.库存不足,返回1
    return 1
end
-- 3.2.判断用户是否下单 SISMEMBER orderKey userId
if(redis.call('sismember', orderKey, userId) == 1) then
    -- 3.3.存在,说明是重复下单,返回2
    return 2
end
-- 3.4.扣库存 incrby stockKey -1
redis.call('incrby', stockKey, -1)
-- 3.5.下单(保存用户)sadd orderKey userId
redis.call('sadd', orderKey, userId)
return 0

当以上lua表达式执行完毕后,剩下的就是根据步骤3,4实现阻塞队列和异步下单来执行我们接下来的任务了

VoucherOrderServiceImpl

private static final DefaultRedisScript<Long> SECKILL_SCRIPT;
static {
    SECKILL_SCRIPT = new DefaultRedisScript<>();
    SECKILL_SCRIPT.setLocation(new ClassPathResource("seckill.lua"));
    SECKILL_SCRIPT.setResultType(Long.class);
}
@Override
public Result seckillVoucher(Long voucherId) {
    //获取用户
    Long userId = UserHolder.getUser().getId();
    long orderId = redisIdWorker.nextId("order");
    // 1.执行lua脚本
    Long result = stringRedisTemplate.execute(
            SECKILL_SCRIPT,
            Collections.emptyList(),
            voucherId.toString(), userId.toString(), String.valueOf(orderId)
    );
    int r = result.intValue();
    // 2.判断结果是否为0
    if (r != 0) {
        // 2.1.不为0 ,代表没有购买资格
        return Result.fail(r == 1 ? "库存不足" : "不能重复下单");
    }
    //TODO 保存阻塞队列
    // 3.返回订单id
    return Result.ok(orderId);
}

# 6.3 秒杀优化-基于阻塞队列实现秒杀优化

VoucherOrderServiceImpl

修改下单动作,现在我们去下单时,是通过lua表达式去原子执行判断逻辑,如果判断我出来不为0 ,则要么是库存不足,要么是重复下单,返回错误信息,如果是0,则把下单的逻辑保存到队列中去,然后异步执行

  • 创建一个线程处理阻塞队列中的订单

  • 加锁保障并发问题

  • 获取代理对象来执行事务方法创建订单、

  • 查询修改数据库

//异步处理线程池
private static final ExecutorService SECKILL_ORDER_EXECUTOR = Executors.newSingleThreadExecutor();

//在类初始化之后执行,因为当这个类初始化好了之后,随时都是有可能要执行的
@PostConstruct
private void init() {	
    SECKILL_ORDER_EXECUTOR.submit(new VoucherOrderHandler());
}

// 用于线程池处理的任务
// 当初始化完毕后,就会去从对列中去拿信息
private class VoucherOrderHandler implements Runnable {

    @Override
    public void run() {
        while (true) {
            try {
                // 1.获取队列中的订单信息
                VoucherOrder voucherOrder = orderTasks.take();
                // 2.创建订单
                handleVoucherOrder(voucherOrder);
            } catch (Exception e) {
                log.error("处理订单异常", e);
            }
        }
    }
}

private void handleVoucherOrder(VoucherOrder voucherOrder) {
    //1.获取用户
    Long userId = voucherOrder.getUserId();
    // 2.创建锁对象
    RLock redisLock = redissonClient.getLock("lock:order:" + userId);
    // 3.尝试获取锁
    boolean isLock = redisLock.tryLock();
    // 4.判断是否获得锁成功
    if (!isLock) {
        // 获取锁失败,直接返回失败或者重试
        log.error("不允许重复下单!");
        return;
    }
    try {
        //注意:由于是spring的事务是放在threadLocal中,此时的是多线程,事务会失效
        proxy.createVoucherOrder(voucherOrder);
    } finally {
        // 释放锁
        redisLock.unlock();
    }
}

private IVoucherOrderService proxy;
private BlockingQueue<VoucherOrder> orderTasks = new ArrayBlockingQueue<>(1024 * 1024);

@Override
public Result seckillVoucher(Long voucherId) {
    Long userId = UserHolder.getUser().getId();
    long orderId = redisIdWorker.nextId("order");
    // 1.执行lua脚本
    Long result = stringRedisTemplate.execute(
            SECKILL_SCRIPT,
            Collections.emptyList(),
            voucherId.toString(), userId.toString(), String.valueOf(orderId)
    );
    int r = result.intValue();
    // 2.判断结果是否为0
    if (r != 0) {
        // 2.1.不为0 ,代表没有购买资格
        return Result.fail(r == 1 ? "库存不足" : "不能重复下单");
    }
    VoucherOrder voucherOrder = new VoucherOrder();
    voucherOrder.setId(orderId);
    // 2.4.用户id
    voucherOrder.setUserId(userId);
    // 2.5.代金券id
    voucherOrder.setVoucherId(voucherId);
    // 2.6.放入阻塞队列
    orderTasks.add(voucherOrder);
    //3.获取代理对象
    proxy = (IVoucherOrderService) AopContext.currentProxy();
    //4.返回订单id
    return Result.ok(orderId);
}

@Transactional
public void createVoucherOrder(VoucherOrder voucherOrder) {
    Long userId = voucherOrder.getUserId();
    // 5.1.查询订单
    int count = query().eq("user_id", userId).eq("voucher_id", voucherOrder.getVoucherId()).count();
    // 5.2.判断是否存在
    if (count > 0) {
        // 用户已经购买过了
        log.error("用户已经购买过了");
        return;
    }

    // 6.扣减库存
    boolean success = seckillVoucherService.update()
            .setSql("stock = stock - 1") // set stock = stock - 1
            .eq("voucher_id", voucherOrder.getVoucherId()).gt("stock", 0) // where id = ? and stock > 0
            .update();
    if (!success) {
        // 扣减失败
        log.error("库存不足");
        return;
    }
    save(voucherOrder);

}

小总结:

秒杀业务的优化思路是什么?

  • 先利用Redis完成库存余量、一人一单判断,完成抢单业务
  • 再将下单业务放入阻塞队列,利用独立线程异步下单
  • 基于阻塞队列的异步秒杀存在哪些问题?
    • 内存限制问题
    • 数据安全问题
上次更新: 2025/5/2 14:40:28
分布式锁-redission⭐⭐
Redis消息队列

← 分布式锁-redission⭐⭐ Redis消息队列→

最近更新
01
项目优化
05-06
02
项目优化
05-06
03
延迟消息
05-05
更多文章>
Theme by Vdoing | Copyright © 2025-2025 Cyan Blog
  • 跟随系统
  • 浅色模式
  • 深色模式
  • 阅读模式